feat: README
This commit is contained in:
parent
2bffb065aa
commit
51433dedb1
|
@ -1,8 +1,17 @@
|
|||
edge(1,2).
|
||||
edge(2,1).
|
||||
edge(1,3).
|
||||
:- include(randompath1000). % 2nd way of reading input facts
|
||||
|
||||
:- table path/2.
|
||||
path(X,Y) :- edge(X,Y).
|
||||
path(X,Y) :- edge(X,Z), path(Z,Y), !.
|
||||
% Way 1
|
||||
%path(X,Y) :- edge(X,Z), path(Z,Y).
|
||||
% Way 2
|
||||
path(X,Y) :- path(X,Z), edge(Z,Y).
|
||||
% Way 3
|
||||
%path(X,Y) :- path(X,Z), path(Z,Y).
|
||||
|
||||
cycle(X) :- path(X,X), !.
|
||||
|
||||
|
||||
printPath :- path(X, Y), fail.
|
||||
printPath.
|
||||
timePath :- cputime(X), printPath, cputime(Y), T is Y-X, write(T).
|
|
@ -1,8 +1,18 @@
|
|||
%input :- [reachin1000]. % one way of reading input facts
|
||||
:- include(reachin1000). % 2nd way of reading input facts
|
||||
|
||||
% Way 1
|
||||
%reach(X) :- source(X).
|
||||
%reach(Y) :- reach(X), edge(X,Y).
|
||||
% Way 2
|
||||
%reach(Y) :- reach(X), edge(X,Y).
|
||||
%reach(X) :- source(X).
|
||||
% Way 3
|
||||
%reach(X) :- source(X).
|
||||
%reach(Y) :- edge(X,Y), reach(X).
|
||||
% Way 4
|
||||
reach(Y) :- edge(X,Y), reach(X).
|
||||
reach(X) :- source(X).
|
||||
reach(Y) :- reach(X), edge(X,Y).
|
||||
|
||||
:- table reach/1.
|
||||
|
||||
|
|
|
@ -16,6 +16,20 @@ generate input set
|
|||
```shell
|
||||
python randomgen.py [number of nodes]
|
||||
```
|
||||
```shell
|
||||
xsb
|
||||
```
|
||||
```prolog
|
||||
['A/reach.P'].
|
||||
timeReach.
|
||||
```
|
||||
| Input size | Way 1 | Way 2 | Way 3 | Way 4 |
|
||||
| ---------- | ----- | ----- | ------ | ------ |
|
||||
| 1000 | 0.0 | 0.0 | 0.765 | 0.766 |
|
||||
| 2000 | 0.0 | 0.0 | 3.047 | 3.047 |
|
||||
| 5000 | 0.0 | 0.0 | 18.828 | 18.953 |
|
||||
|
||||
There is huge impact if we write edge(X,Y) before reach. But when I try this in swi-prolog(there is no cputime/1, so I cannot table it), there is no significant different between different ways of implementation.
|
||||
### Transitive closure and cycle
|
||||
```shell
|
||||
xsb
|
||||
|
@ -34,6 +48,46 @@ xsb
|
|||
timeNQueen(8).
|
||||
timeOneQueen(8).
|
||||
```
|
||||
| Number of queens | Time for 1 queen | Time for all queens |
|
||||
| ---------------- | ---------------- | ------------------- |
|
||||
| 8 | 0.0 | 0.047 |
|
||||
| 10 | 0.0 | 0.25 |
|
||||
| 12 | 0.0 | 7.796 |
|
||||
| 14 | 0.015 | 298.719 |
|
||||
| 16 | 0.094 | Too long to run |
|
||||
| 18 | 0.485 | Too long to run |
|
||||
| 20 | 2.796 | Too long to run |
|
||||
| 22 | 29.407 | Too long to run |
|
||||
|
||||
I found somewhing interesting when I tried to use swi-prolog to program this question. The following code works in swi-prolog(not xsb):
|
||||
```prolog
|
||||
attacks((Row1, Col1), (Row2, Col2)) :-
|
||||
Row1 =:= Row2;
|
||||
Col1 =:= Col2;
|
||||
abs(Row1 - Row2) =:= abs(Col1 - Col2).
|
||||
|
||||
no_attacks(_, []).
|
||||
no_attacks(Queen, [OtherQueen|OtherQueens]) :-
|
||||
\+ attacks(Queen, OtherQueen),
|
||||
no_attacks(Queen, OtherQueens).
|
||||
|
||||
queen_positions(0, []).
|
||||
queen_positions(N, [(N, Col)|Queens]) :-
|
||||
N > 0,
|
||||
N1 is N - 1,
|
||||
queen_positions(N1, Queens),
|
||||
member(Col, [1,2,3,4,5,6,7,8]).
|
||||
|
||||
legal_queens([]).
|
||||
legal_queens([Queen|Queens]) :-
|
||||
legal_queens(Queens),
|
||||
no_attacks(Queen, Queens).
|
||||
|
||||
n_queens(N, Solution) :-
|
||||
queen_positions(N, Solution),
|
||||
legal_queens(Solution).
|
||||
```
|
||||
but it runs ridiculously slow(takes seconds to compute one solution of 8 queens).Then I tried to play with it and rearrange it a little bit and the answer I got (in A/queens.P) now runs much faster in swi-prolog and runs succesfully in XSB.
|
||||
|
||||
## Part B
|
||||
### Reach
|
||||
|
@ -50,15 +104,16 @@ clingo --models 0 B/reach.lp
|
|||
| 20000 | 1.376s | 1.446s | 1.290s | 1.292s |
|
||||
| 50000 | 3.355s | 3.501s | 2.750s | 1.645s |
|
||||
| 100000 | 6.778s | 5.002s | 3.375s | 3.438s |
|
||||
| 200000 | 12.119s | 7.514s | 7.267s | 7.021s |
|
||||
| 200000 | 12.119s | 7.514s | 7.267s | 7.021s |
|
||||
|
||||
Though it looks like the Way4 is way better tha Way 1(Almost twice as fast), but if we let the computer to rest for a while and rerun them the other way(start from 4, then 3, follow by 2 and 1), we got
|
||||
| Input size | Way 1 | Way 2 | Way 3 | Way 4 |
|
||||
| ---------- | ------ | ------ | ------ | ------- |
|
||||
| 200000 | 7.146s | 7.610s | 7.120s | 12.103s |
|
||||
| 200000 | 7.146s | 7.610s | 7.120s | 12.103s |
|
||||
|
||||
It is exactly the other way around! I belive it is because the input file becomes too large
|
||||
(42 MByte), so it waste a lot of time to load it to memory then cache, and the following ones has much higher cache hits rate, so the first one takes way longer than the others.
|
||||
(42 MByte), so it waste a lot of time to load it to memory then cache, and the following ones has much higher cache hits rate, so the first one takes way longer than the others.
|
||||
The runtime grows linearly respect to the input size, and there is no significant difference between different implementations.
|
||||
### N-queens
|
||||
```shell
|
||||
clingo --models 0 B/nqueens.lp
|
||||
|
@ -72,12 +127,57 @@ clingo --models 1 B/nqueens.lp
|
|||
| 10 | 0.003s | 0.086s |
|
||||
| 12 | 0.004s | 4.909s |
|
||||
| 14 | 0.006s | Too long to run |
|
||||
| 20 | 0.011s | |
|
||||
| 50 | 0.073s | |
|
||||
| 100 | 0.463s | |
|
||||
| 200 | 3.233s | |
|
||||
| 500 | 35.073s | |
|
||||
| 20 | 0.011s | Too long to run |
|
||||
| 50 | 0.073s | Too long to run |
|
||||
| 100 | 0.463s | Too long to run |
|
||||
| 200 | 3.233s | Too long to run |
|
||||
| 500 | 35.073s | Too long to run |
|
||||
|
||||
|
||||
## Part C
|
||||
### N-queens
|
||||
### N-queens
|
||||
|
||||
| Number of queens | Max k |
|
||||
| ---------------- | ----- |
|
||||
| 4 | 3 |
|
||||
| 8 | 3 |
|
||||
| 10 | 4 |
|
||||
| 12 | 5 |
|
||||
| 14 | 5 |
|
||||
| 16 | 5 |
|
||||
| 18 | 5 |
|
||||
| 20 | 5 |
|
||||
|
||||
## Extra Credit
|
||||
### I
|
||||
```shell
|
||||
python .\randompath.py 5000
|
||||
```
|
||||
```shell
|
||||
xsb
|
||||
```
|
||||
```prolog
|
||||
['A/cycle.P'].
|
||||
timePath.
|
||||
```
|
||||
| Number of Nodes | Way1 | Way 2 | Way3 |
|
||||
| --------------- | ------ | ------ | --------------- |
|
||||
| 200 | 0.0 | 0.0 | 0.407 |
|
||||
| 500 | 0.031 | 0.031 | 6.125 |
|
||||
| 1000 | 0.109 | 0.093 | 50.75 |
|
||||
| 2000 | 0.391 | 0.391 | Too long to run |
|
||||
| 5000 | 2.484 | 3.093 | Too long to run |
|
||||
| 10000 | 10.344 | 13.125 | Too long to run |
|
||||
|
||||
### II
|
||||
See Extra/2.pl
|
||||
| Number of queens | Max k |
|
||||
| ---------------- | ----- |
|
||||
| 4 | 3 |
|
||||
| 8 | 3 |
|
||||
| 10 | 4 |
|
||||
| 12 | 5 |
|
||||
| 14 | 5 |
|
||||
| 16 | 5 |
|
||||
| 18 | 5 |
|
||||
| 20 | 5 |
|
|
@ -6,5 +6,5 @@ file = open("reachin1000", "w")
|
|||
for i in range(10 * x):
|
||||
j = random.randint(1,x)
|
||||
k = random.randint(1,x)
|
||||
file.write("edge({}, {}).\n".format(i, j))
|
||||
file.write("edge({}, {}).\n".format(j, k))
|
||||
file.close()
|
9
Assignment1/randompath.py
Normal file
9
Assignment1/randompath.py
Normal file
|
@ -0,0 +1,9 @@
|
|||
import random
|
||||
import sys
|
||||
if len(sys.argv) == 2: x = int(sys.argv[1])
|
||||
else: x = 1000
|
||||
file = open("randompath1000", "w")
|
||||
for i in range(x):
|
||||
file.write("edge({}, {}).\n".format(i, i + 1))
|
||||
file.write("edge({}, 1).\n".format(x))
|
||||
file.close()
|
2000100
Assignment1/reachin1000
2000100
Assignment1/reachin1000
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user