
AMS 345/CSE 355 (Fall, 2022) Joe Mitchell

COMPUTATIONAL GEOMETRY
Homework Set # 2

Due (upload to Blackboard) on Tuesday, September 20, 2022.
Relevant Lecture Modules: 9–14.
Required Reading: Devadoss-O’Rourke, Chapter 2 (sections 2.1–2.6), and the Appendix (on com-
putational complexity); O’Rourke, Chapter 3 (sections 3.1–3.8).

In all of the exercises, be sure to give at least a brief explanation or justification for each claim
that you make.

PROBLEMS TO TURN IN:

(1). [5 points] (a). Let S be the set of points {(3,1), (4,4), (5,-1), (2,-1), (2,2), (2,1), (4,-1), (6,1),
(8,1), (8,5), (7,4), (3,3)}. (Specifically, consider the points in S to be p0 = (3, 1), p1 = (4, 4),
p2 = (5,−1), . . . , p11 = (3, 3), so the 12 points are indexed 0-11, in the order given.) When the
Graham Scan code of Section 3.5 is run on this data, what is the sorting (as in Table 3.1 of
[O’Rourke]) and what is the history of the stack (as in the example on page 86 of [O’Rourke])?
Plot the points and the resulting convex hull.

(b). In Graham’s convex hull algorithm, as implemented in O’Rourke, we sort the n input points
by angle about a bottommost point, and then, scanning through the sorted list of points, maintain
a stack, representing a left-turning chain of (input) points that are the vertices of the convex hull
so far in the scan. Suppose now that we skip the sorting step; specifically, assume that we are given
an input sequence of points, (p0, p1, p2, . . . , pn−1), and we know that p0 is the (unique) bottommost
point and that (p0, p1) is one edge of the convex hull of the points (i.e., all points p2, . . . , pn−1 lie to
the left of the oriented line through p0 and p1). Nothing further is assumed about the ordering of
the input points. (Note that we could easily find two points that form an edge of the convex hull,
like p0p1, in O(n) time, by doing one step of gift-wrapping.) Now, consider performing the Graham
scan algorithm to this (unsorted) list of points, maintaining a stack representing a left-turning
chain, pushing a new point (in the order given by the input) if it is to the left of the oriented line
defined by the top two elements of the stack, and, if not, popping the stack, until we can push
it on the stack while keeping the left-turning property. (That is, we exactly do the Graham scan
algorithm, but we just use the order of the input points, without sorting them in any way, other
than knowing that p0p1 is an edge of the hull.)
(i). This algorithm runs in time O(n). Give an explanation why this is true, as precisely and
succinctly and clearly as you can.
(ii). Give an example (having no degeneracies – no two points have the same x- or the same y-
coordinate, and no three points are collinear) showing, though, that it can give an incorrect answer.
Explicitly list the points in your example: what are the coordinates of p0, p1, p2, etc? Also show a
picture. Explain briefly what goes wrong.

(2). [5 points] (a). Consider running the QuickHull algorithm to compute the upper convex hull
of the set S = {p0, p1, . . . , p12} of n = 13 points shown below. The first call is to QuickHull(p9, p3,
{p0, p1, p2, p4, p5, p6, p7, p8, p10, p11, p12}), which is to determine the upper convex hull from a = p9 to
b = p3, with respect to the set {p0, p1, p2, p4, p5, p6, p7, p8, p10, p11, p12}. Now, QuickHull recursively



will make several calls, to complete the computation. Explicitly give those recursive calls (for each
call to QuickHull(a, b, S), give explicitly the values of the points a, b, and the set S).

5

8

9

02

1

3

4

10 6
7

11

12

(b). In our description of the QuickHull algorithm to compute the upper convex hull of a set
S of points from leftmost point a to rightmost point b, we computed a “split” point, c, based on
selecting c to be the point of S above segment ab that maximizes the distance from c to the line
through a and b (equivalently, we maximized the vertical distance from c to the line through a and
b).

Consider alternative ways of selecting c below. For each, state whether or not it always works
(yields a correct algorithm for the upper hull); justify briefly – if it works, explain briefly why it
works; if it does not always work, give an explicit example for which it fails, and explain your
example (why it fails).

You may assume that the points S are in general position (no three are collinear) and are all
above the line through a and b (points that are below the line will never be vertices of the upper
convex hull of S).
(i). Pick c to maximize the angle ̸ abc
(ii). Pick c to minimize the angle ̸ abc
(iii). Pick c to maximize cy − ay, where cy is the y-coordinate of c and ay is the y-coordinate of a.
(iv). Pick c to maximize the sum of the (Euclidean) distances d(a, c)+d(b, c), from a to c and from
b to c.
(v). Pick c to minimize the sum of the (Euclidean) distances d(a, c) + d(b, c), from a to c and from
b to c.



ADDITIONAL PRACTICE PROBLEMS: TRY THEM, UNDERSTAND THEM, YOU
ARE RESPONSIBLE FOR THEM

(3). (a). Devadoss-O’Rourke: Problem 2.12: Alter the incremental algorithm so that it still works
for point sets that may have two or more points with the same x-coordinate, without rotating the
set into general position.

(b). Devadoss-O’Rourke: Problem 2.19: Describe a point set with n points that serves as the
worst-case for the gift-wrapping algorithm. What is its time complexity in this case?
Devadoss-O’Rourke: Problem 2.20: Describe a point set with n points that constitutes the best-case
for the gift-wrapping algorithm. What is its time complexity in this case?

(c). (related to Devadoss-O’Rourke: Problem 2.23): Given a point set S, design an algorithm
that finds a star-shaped (i.e., 1-guardable) simple polygon whose vertices are precisely S.

(d). Devadoss-O’Rourke: Problem 2.31: It might seem that the highest and lowest points of
A and B should always be the points of tangency we are looking for. Find examples where this
is not the case. Draw your example carefully, showing what the correct points of tangency are,
and showing also the highest and lowest points, making it clear that they do not give the common
tangent that we seek.

(4). (a). O’Rourke, problem 4, section 3.2.3, page 68: An affine combination of points x1, . . . , xk
is a sum of the form α1x1 + · · · + αkxk, with α1 + · · · + αk = 1. Note that this differs from the
definition of a convex combination in that the condition αi ≥ 0 is dropped. In two dimensions,
what is the affine hull of two points? Three points? n > 3 points? In three dimensions, what is
the affine hull of two points? Three points? Four points? n > 4 points?

(b). The green combination of points x1, . . . , xk is a sum of the form α1x1 + · · · + αkxk, with
α1 + · · · + αk = 1, αi ≥ 0.25. What does the green combination of two points in the plane look
like? Describe and give some examples: specifically, draw the green combinations of the following
pairs of points: {(0, 0), (1, 1)}, {(1, 2), (2, 2)}, {(−1, 0), (1, 0)}.

(5). O’Rourke, problem 4, section 3.4.1, page 72: QuickHull worst case: Construct a generic point
set that forces QuickHull to its worst-case quadratic behavior. By “generic” is meant a construction
that works for arbitrarily large values of n (i.e., “general” n),

(6). (a). Let S be the set of points {(10,4), (10,0), (4,1), (1,4), (4,5), (5,3), (12,3), (-1,1), (-1,3),
(-1,0), (4,-3), (1,-3), (4,-1), (0,1)}. When the Graham Scan code of Section 3.5 is run on this data,
what is the sorting (as in Table 3.1) and what is the history of the stack (as in the example on page
86)? Plot the points and the resulting convex hull.

(b). Give a specific example of a set S of points in the plane, having integer coordinates (give
them!) so that, when Graham’s algorithm the history of the stack, and the value of i at the top of
the while loop is as follows (as on page 86 of [O’Rourke]):

i = 2 : 5, 2
i = 3 : 3, 5, 2
i = 4 : 0, 3, 5, 2
i = 4 : 3, 5, 2
i = 4 : 5, 2
i = 5 : 6, 5, 2
i = 6 : 4, 6, 5, 2



Draw your example clearly (in addition to giving the integer coordinates of the 7 points of S).

(7). The algorithm below is proposed to find the convex hull of a simple polygon P that has n
vertices, in O(n) time. The goal is to avoid the need to sort, by using the order given by the vertices
of P , which are assumed to be given in clockwise order around the boundary of P . The algorithm
is essentially just doing a variant of the Graham Scan, using the order of the vertices about P in
the incremental insertion.

Show that this algorithm can fail by finding a counterexample (an instance of a simple polygon)
for which the output is erroneous. Explain.
Algorithm: Let the stack Q be initialized as (q0, q1), where q0 is the leftmost point of the polygon
and q1 is the (clockwise) successor of q0 in the list of points of the polygon. March around the
polygon (clockwise), starting with the successor of q1. If at some stage the stack is Q = (q0, . . . , qi),
with i ≥ 1, then let p be the successor of qi. If (qi−1, qi, p) is a right turn, then push p onto the
stack Q; otherwise, pop Q (and continue popping Q) until this right-turn condition is satisfied or
until there is only one point remaining in the stack, and then push p onto Q. Stop when you return
to point q0.


